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Abstract--Weakly nonlinear, gravity waves at the interface between two fluids in relative motion are 
considered. The dynamical limit to progressive waves of permanent form (an extension to finite amplitude 
of the Kelvin-Helmholtz instability) is studied as a function of the fluid depths. Stable, gas/liquid waves 
are shown to exist at current velocities above Ud, the critical of linear theory (supercritical stability). A 
notable exception is shown to hold for a range of wavelengths when a liquid of infinite extent is bounded 
by a thin gas film. Long, liquid/liquid waves cease to exist at current velocities below Uc~ and are further 
unstable to self-interaction with higher harmonics (subcritical instability). These notions are used to 
discuss the nonlinear evolution of interfacial instabilities. 
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1. I N T R O D U C T I O N  

Over the last few decades a large amount  of  work has been done on inviscid, steady progressive, 
gravity waves on a free surface. The neglect of  air is justified in oceanographic applications on the 
grounds of its small density and the large wavelength scales, requiring unrealistically high wind 
speeds to exhibit significant air influence. The situation in horizontal, two-phase flows is quite 
different. Indeed, the Kelvin-Helmholtz instability, a strong manifestation of the effect of  air flow, 
is of  central importance in understanding various observations (e.g. Kordyban & Ranov 1970; 
Andritsos & Hanra t ty  1987). The extension of the analytical and numerical techniques developed 
for handling free-surface waves could point to useful new results for interfacial waves and, 
consequently, could lead to a better understanding of some two-phase flow phenomena. Therefore, 
it is at tempted in the present work to develop on the theory of interfacial waves between two fluids 
in relative motion, when one or both layers are shallow with respect to the wavelength. 

Nonlinear interfacial waves have been considered by relatively few investigators. An excellent 
review of the early work in the field is provided by Miles (1986). Pullin & Grimshaw (1983a, b) 
derived a third-order expansion for arbitrary depths and obtained numerical solutions for nonlinear 
progressive waves for a thin upper layer in the Boussinesq limit. Miles (1986) derived a second-order 
expansion for arbitrary depths and provided the evolution equations that govern Kelvin-Helmholtz 
waves in the parametric neighborhood of the critical point. Bontozoglou & Hanrat ty  (1988; 
hereafter referred to as BH1), following Saffman & Yuen (1982) who considered fluids of  infinite 
extent, examined the "dynamical limit" to the existence of  steady wave solutions in the case of  a 
thin liquid film bounded by a gas of  infinite extent. 

The dynamical limit is conveniently defined by considering an increasing current velocity U with 
a fixed wave height. For  U larger than a critical velocity Uc, solutions at a given wave height cease 
to exist althrough the limiting wave profile is smooth and exhibits no unphysical properties. For  
infinitesimal heights this limit is associated with the well-known Kelvin-Heimholtz instability; 
it may be interpreted as the nonexistence of steady linear waves of  a given wavelength when U 
is sufficiently large. For finite-amplitude waves the critical current Uc is a function of the wave 
height. 

The present work examines the characteristics of  long gravity waves at the interface between two 
shallow fluid layers (gas/liquid or liquid/liquid). The effect of  surface tension is neglected in view 
of the large length scale of the waves considered. Relative motion of the fluids is included by 
considering a nonzero current velocity U. The dynamical limit is studied as a function of  the flow 
parameters,  using a perturbation expansion in the wave amplitude. In this sense the present 
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contribution is complimentary to previous work (BH1), which examined only the effect of finite 
lower-fluid depth. 

Attention is focused in the parametric neighborhood of the Kelvin-Helmholtz instability, where 
existence or nonexistence of progressive waves of permanent form is observed by varying system 
parameters. A fundamentally different physical picture emerges for the two cases with implications 
in the evolution of the interface with increasing relative velocity U. The stability of weakly nonlinear 
waves under self-interaction is considered and both supercritical stability and subcritical instability 
are predicted for different conditions. Finally, the results are discussed in connection with the 
stability analysis of Ahmed & Banerjee (1985) and inferences are made regarding the possible 
evolution of long waves. 

2. PROBLEM F O R M U L A T I O N  

Periodic gravity waves are considered at the interface between two fluids of uniform depth. 
The fluids have different densities and the upper is moving relative to the lower with a horizontal 
velocity U. They are taken to be incompressible and inviscid, and the motion is assumed to be 
irrotational. With the above assumptions, the flow can be described by two velocity potentials, 
~01 and tp2. Solutions are obtained for steady, two-dimensional waves of wavelength L, which 
propagate with phase speed C in the direction of U. Properties of the lower fluid are subscripted 
by 1 and those of the upper fluid by 2. The two fluids are assumed to be stably stratified by gravity, 
SO P2 < Pl .  

The flow is sketched in figure 1. Rectangular coordinates (x, y) are chosen such that the x-axis 
is horizontal and the y-axis is directed vertically upwards. The interface is located at y = q and 
the bottom and top boundaries at - d .  and d2, respectively. The origin is chosen so that the mean 
elevation (q) . . . .  = 0. The reference frame is such that the fluid velocity averaged over one wave 
cycle (circulation), at any fixed depth within the lower fluid, is zero. For finite upper fluid depth, 
the current velocity U is defined similarly. It equals the fluid velocity averaged over one cycle, on 
any fixed height within the upper fluid. For an unbounded upper fluid, U is simply the fluid velocity 
at infinity. 

With the above assumptions, the velocity potentials ~ol and ~02 satisfy Laplace's equation in each 
fluid domain, in addition to the following set of boundary conditions: 

(i) the no penetration conditions, [1] and [2], on the solid boundaries, 

and 

~(~1 - 0  a t y = - d ,  [1] & 

0~?=0 aty=d2; [2] & 

d2 Y T U 

! 

y = ~(x,t) 

dl 

Figure 1. Sketch of the flow and symbol definition. 
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and 

(ii) the kinematic conditions at the interface, 

&l Oq~i Orl 3¢i 
+ - at y = t /( i  = 1,2); [3] 

Ot Ox Ox Oy 

(iii) the dynamic boundary condition which, with the neglect of surface tension, guarantees 
continuity of pressure across the interface, 

+g(Vqh)2 - r ' O t k  +5(V~°~)~ + ( l - r ) g t l + K = 0 ,  [4] 
0t 

where 

and 

P2 

Pl 

K = combination of Bernoulli constants. 

3. WEAKLY N O N L I N E A R  APPROXIMATION 

The properties of weakly nonlinear steady waves are obtained by using Whitham's averaged 
variational principle (Whitham 1974, Section 16.6). For the case of interest the averaged 
Lagrangian is given by 

L = -  LO t +½(Vqh) l+gy  d y +  r--+½r(Vtp2)2+rgy d y - L o ,  [5] 
- d  I 

where the overbar denotes averaging over one cycle of the wave phase and 

f" f::( +rgy)dy; [6] = -- ½ r U  2 Lo gy dy - 
- d  l 

L0 is included only when one or both boundaries move to infinity, in order to ensure a convergent 
value for L. Following Whitham (1974), the leading-order terms for the wave profile and the 
velocity potentials are substituted in the expression for L: 

r/(w) -- a cos w + a2 cos 2w, 

q~l (x, y, t) -- A~ [exp(ky ) + exp( - 2kd~ )exp( - ky )]sin w 

+ - ~  [exp(2ky) + exp(-4kd,  )exp(-  2ky)]sin 2w, 

~o2(x, y, t) = Ux + BL [exp(ky) + exp(2kd2)exp(-ky)]sin w 

+ ~ [exp(2ky) + exp(4kd2)exp(- 2ky)]sin 2w, 
Z 

[7] 

where w is the wave phase w = k x -  o~t and, for progressive waves of permanent form, the 
coefficients a, A~ and B~ are real. 

It is anticipated that A~ and B~ are O(a) and a2, -42 and B2 are O(a:), and terms up to O(a 4) 
are retained in the expression for L. Note that the O(a ~) and O(a 4) terms in the expansion [7] 
automatically disappear during the averaging procedure, so the expression for the Lagrangian L 
is on the whole of accuracy O(a4). The coefficients A~, Bl, A2 and B2 are eliminated by use of the 
equations 

OL OL c~L OL 
3AI=OBI=OA2 OB~ O, [8] 
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and after some algebra it is found that  

L=_½rU2d2 , 2 2 _ ( + r 2  +~g(d,-~d:)+¼g(r 1) (a :+a~)+¼k~:  ~ 1 + x  ,~ 1 + y )  
?2-;- H 1 - x  

/ 

- ~  a a~ ~ r,V ~ l + ~ k a =  ,~ i _ - - -~+~ ,V~ i _---L-7) 

[ Y 
+4 [ \ l_x )  L(l_x)2 _y)= 

where x = e x p ( -  2kdl), y = e x p ( -  2kd2), 2 = C1 = linear phase speed, 2 '  = U - C1 and 2 and 2 '  
are related by the linear dispersion relation 

22 1 + x  1 + y  g + r 2  ' 2 -  - ( l - r ) .  [10] 
i - x  1 - y  k 

The value of  a2 is found from OL/Oa2 = 0 and is substi tuted in [9]. The dispersion relation for the 
weakly nonlinear  wave then follows f rom OL/a(a 2) = 0: 

l+Xc2+r l+y (u ~ C ) 2 
1 - -~  l ----y 

= ~ ( 1 - r )  l+sk"-2k2a2(l-y)2+2k3a2g(12r)\~Z--£-x) (1 y)2 ( l - - x ) 2  

~k22 [l+4x+x 2 (I+x~(I+Oy+Y2~I (l+4y+y2~2 1 
+ ½k2a 2 (g ( l  - r) (1 - x) 2 + \ ~ - ~ -  x ] 5 -~y-5--JJ - \ - ~  _~fT - ) j  

~ \ ] ~ y /  + g ( I - - r - - ~  - - #  i-;[/7kSy)U3 
= g (1 -- r)  (l + k2a2S), [ l l ]  

k 

where S represents the remaining terms in the large open square brackets.  For  fluids of  infinite 
extent dt ~ + oo, d2--* + oo and x = y = 0. It can be verified that  in this case [11] agrees with that  
given by Saffman & Yuen (1982). 

The behavior  of  slowly varying solutions in the ne ighborhood  of  the Ke iv in -He lmhol t z  
instability is considered next by taking the coefficients in the expansions [7] to be functions of  the 
"s low"  time z = 6t, where 6 is a scaling pa ramete r  o f  the order  of  the wave amplitude.  In other  
words, it is postulated that  the coefficients do not change significantly over  timescales comparab le  
to the wave period. The new expansions are substi tuted in [5] and it is observed that, to the order 
of  accuracy considered, derivatives of  only the first-order coefficients appear  in the expression. 
Therefore,  the higher coefficients are readily eliminated by the same procedure  as above and after 
some algebra it is found that  

L = k 2 a 2 -  A j  2 2 1 4 4 k a - s S ~ k  a + c o n s t ,  [12] 

where 

const = the constant  terms, which are the same as in [9], 

A = 2 2  1 + x  i + y  ......... + r 2 , 2  
1 - x  1 - y '  

1 + x  l + y  
T -  + r  

1 - x  ! - y  

and 
da 

dt 
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Since the analysis is valid in the neighborhood of the Kelvin-Helmholtz instability, the phase 
velocity is taken equal to the neutral stability value in the linear approximation. It should be noted 
that [12] correctly reduces to [9] when the amplitude, a, of the wave is taken as constant (da/dt = 0). 
The evolution of slowly varying waves is described by the Euler equation of the averaged 
Lagrangian [12]: 

d (~L~ ~L 
dt \-~aJ - ~a  = o, [13] 

which is found equal to 

I (1 - -  r)g A]  ( 1  - -  r)g 
k k k2(ka ) + S ~ k2(ka) 3 = 0. [14] ka + T 

This result will be used to examine the stability to self-interaction of the progressive solutions of 
permanent form. 

4. RESULTS 

4. I. Progressive waves of permanent form 
It can be seen from the dispersion relation [11] that, for linear waves (a ~0)  and given values 

of the density ratio r, current velocity U and fluids depth dl and d2, there are two solutions 
corresponding to the two roots of the quadratic equation for C. These are denoted by C+ and C_, 
where C+ > C_. For the linear case steady solutions cease to exist when U exceeds a critical value 
U¢I (the second subscript, 1, standing for linear), given by 

and 

~ k ( ~ _ _ ~ ) (  l + x + r l + y ~  
1 - x  

U¢1= 1 +x 1 +y 
1 - x  1 - y  

[15] 

l + y )  

C+ = C_ = r \ ~ _ y ]  Uc,. [16] 
(11 + x  l + y ' ~  

For finite-amplitude waves (a q: 0) these two solutions continue into two families of solutions 
C+ (a) and C_ (a). From the form of the dispersion relation [11] for finite-amplitude waves it can 
be seen that there will again be a critical current Uc beyond which steady solutions no longer exist. 
Saffman & Yuen (1982) calculated U¢ for unbounded fluids, both analytically (second-order 
approximation) and numerically. They were the first to note that the critical current velocity 
increases for increasing wave amplitude a, a result that can be viewed as a stabilization of parallel 
flows by waves. Thus, for a given value of U > U~, steady interfacial configurations exist on 
unbounded fluids only if there are waves with heights greater than some minimum. 

The main focus of the present work is to examine the dependence of this phenomenon on the 
depth of the fluid layers. In particular, the cases of a shallow upper/deep lower layer and of shallow 
layers of comparable depth are considered in detail. The motivation is to provide an understanding 
of interfacial waves for the flow of gas and liquid in pipelines and channels, under conditions 
corresponding to the initiation of slugging. 

The following value of the critical current velocity U¢, correct to second order in the amplitude 
a, is obtained by equating the two roots in [11]: 

Uc = Ucl[1 + k2a2S] 1/2. [17] 
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Therefore, for the general case the term [(Uc/UcO 2 -  1] varies linearly with k2a 2, with the slope S 
being a function of  the ratio of  densities, the wavelength and the fluid depths. It is demonstrated 
elsewhere (Bontozoglou & Hanrat ty  1990) that this dependence of Uc on the amplitude, a, 
changes when the wavelengths considered are small enough that surface tension can no longer be 
neglected. 

The slope S is a rather complicated function of the system variables, as is evident from [11]. 
Therefore, it is deemed illuminating to plot a few representative cases. Fluid layers of  comparable 
depth are considered first and results for the slope S as a function of the dimensionless depth, kdt,  
are shown in figures 2a-d for d2/dl = 1, 0.5 and 0.25. For the flow of air and water (figure 2a) and 
equal depths, the slope S retains an almost constant positive value over a wide range of wave- 
lengths, then increases abruptly for very long waves. This increase occurs earlier as the gas spacing 
decreases. Compared with the smaller values of  S for unbounded fluids, these results indicate that 
long, interfacial waves of  very small amplitude can have a strong stabilizing effect in such gas/liquid 
flows. Figure 2b shows results for a ratio of  densities r = 0.1, which could correspond to a gas/ 
liquid system under high pressure. The similarity with figure 2a indicates that the above conclusions 
should also hold for high pressure. For reasons that will become clearer in the next section, this 
behavior will be called supercritical. 

The calculations for r = 0.9, a density ratio typical of  liquid/liquid systems, are presented in 
figure 2c. A striking difference with previous results is evident. The slope S decreases monotonically 
with increasing wavelength and becomes negative for very long waves. It is interesting to note that 
a negative value of S corresponds to a decrease in the critical current velocity U~ with increasing 
wave amplitude. Consequently, high, steady waves cease to exist at current velocities lower than 
the critical linear, U~, and no waves of  a given wavelength exist for U > Ud. 

In previous work (BHI)  it was demonstrated that this last behavior, which is now called 
subcritical, always occurs for a thin enough lower fluid in contact with an unbounded upper fluid. 
The respective curve for the dependence of S on kd~ is included in figure 2c for comparison. The 
present results indicate that the effect of  an upper boundary in close proximity to the interface is 
inverse for fluids with similar and with very different densities. In the liquid/liquid system, a shallow 
upper fluid is further destabilizing long interfacial waves (Uc < Ucl for a > 0), an effect which, as 
figure 2c demonstrates, extends to shorter waves with decreasing d2. In contrast to the above, the 
inclusion of an upper boundary in a gas/liquid system turns the behavior from subcritical to 
supercritical, as a comparison between the results in BH1 and figure 2a readily indicates. 

The effect of the ratio of  densities, r, on the slope S is systematically presented in figure 2d. 
Results are plotted for kd, = 1 and d2/d I = 1, 0.5 and 0.25 and a transition from supercritical to 
subcritical behavior is evident with increasing values of  r. The practical significance of the results 
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Figure 2a. Slope of the dynamical limit line vs the dimen- 
sionless depth kd] for the ratio of densities r = 0.0012 and 

d2/dt = 1.0 (. . .) ,  0.5 ( ) and 0.25 (- -). 
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Figure 2b. Slope of the dynamical limit line vs the dimen- 
sionless depth kd~ for the ratio of densities r = 0. I and 

d2/d I = 1.0 (. . .) ,  0.5 ( ) and 0.25 (---) .  
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Figure 2c. Slope of the dynamical limit line vs the dimen- 
sionless depth kd~ for the ratio of densities r = 0.9 and 
d2/dl= 1.0 ( . . . ) ,  0.5 ( ) and 0.25 (---).  The thin, 
continuous line, corresponding to an upper fluid of infinite 

extent, is included for comparison. 

Figure 2d. Slope of the dynamical limit line vs the ratio of 
densities, r, for dimensionless depth kd t = 1.0 and 

d2/d ~ = 1.0 ( . . . ) ,  0.5 ( ) and 0.25 (---).  

for intermediate values of the ratio of  densities is, however, questionable since one can hardly find 
pairs of fluids with appropriate densities. 

A physical explanation of the different behavior for small and large density ratios can be 
provided on the following lines. The Kelvin-Helmholtz instability for gravity waves is associated 
with a balance between the destabilizing inertia of the upper fluid (suction) and the stabilizing effect 
of  the density stratification. The inclusion of weak nonlinearity adds O (a 2) corrections to the inertia 
and gravity terms in both fluids. In particular, the suction exercised by the upper fluid is partly 
balanced by a similar Bernoulli effect in the lower fluid, caused by the motion induced by the 
progressive wave. This motion is proportional to the wave velocity C. The inclusion of only a lower 
boundary progressively suppresses this motion in the lower fluid and eventually (for sufficiently thin 
films) leads to the subcritical behavior. When an upper wall is added to the system, the Bernoulli 
suction is apparently enhanced with a parallel increase in the lower fluid inertia, due to the increase 
in the phase velocity (see [15] and [16]). However, the allowable wave amplitudes are strongly 
suppressed because of the small channel height and this provides the essential difference between 
a gas/liquid and a liquid/liquid system. Because of the strong stratification between a gas and a 
liquid, small nonlinear corrections in the wave height have a significant stabilizing effect, leading 
to supercritical behavior. On the contrary, a liquid/liquid system cannot achieve the same degree 
of gravity stabilization, leading to subcritical behavior. A detailed analysis of  all the terms reveals 
the exact contributions at each order of approximation, but the above qualitative description 
essentially contains the underlying physics. 

The final case considered is that of a shallow upper fluid in contact with a lower fluid of 
infinite extent. This particular combination could be of  interest in the description of systems 
where the lower fluid is at least an order of magnitude deeper than the upper. The results for the 
two representative density ratios are plotted in figure 3. For  r = 0.9 the behavior is the same as 
for two shallow layers (cf. figure 2c). It is worth noting though that, for r = 0.1, the slope S 
of the dynamical limit curve is a nonmonotonic function of the dimensionless upper depth, 
exhibiting a local maximum for some intermediate value. The subcritical behavior for very 
thin upper fluids is in part artificial, emanating from the assumption of  a lower fluid of infinite 
extent. In reality, for sufficiently long waves, the dimensionless liquid depth will be finite 
and the slope will turn upwards and become positive once again. There is no doubt, however, 
that for a range of  wavelengths, the slope S is negative. The practical significance of  this 
observation is considered in the discussion, after a stability analysis of the above solutions has been 
performed. 



516 v. BONTOZOGLOU 

4.2. The stability of  progressive waves of  permanent form 

Equation [14], which describes the slow evolution of the wave amplitude under self-interaction, 
is put in the concise form 

kii + m(ka)  + l(ka) 3 = 0. [18] 

The progressive waves of  section 4.1 correspond to da/dt = 0. The stability of  these solutions to 
small perturbations around the steady state, a = a0, is found- -by  substituting 

a = a0 + re n' [19] 

in [18], linearizing and subtracting the steady solut ion-- to  be governed by the relation 

n 2 + 21k2a 2 = 0. [20] 

Therefore, for S > 0 ( / >  0) weakly nonlinear waves are stable, whereas for S < 0 ( / <  0) the waves 
are unstable. This is a special case of  a classical result of  nonlinear hydrodynamic stability analysis, 
termed supercritical stability and subcritical instability, respectively. Therefore, the use of  the above 
terms in the preceding section is now justified. It should be noted that a more general stability 
analysis by Miles (1986), permitting quasi-periodic solutions as well, slightly modifies the above 
results in that the subcritical waves becomes unstable only above a certain amplitude. 

5. D I S C U S S I O N  

The consideration of fluid layers of  finite depth uncovers a surprisingly rich behavior of  the 
dynamical limit to weakly nonlinear waves of  permanent form. For long waves between thin 
fluid layers, an increase in the critical current velocity with increasing wave amplitude is typically 
calculated for gas/liquid systems. This behavior becomes more pronounced as the wavelength 
increases. When, however, a liquid of  infinite extent is considered, there exists a range of  
wavelengths for which the critical current velocity is a decreasing function of  the wave amplitude. 
For gas spacing of the order of  centimeters, this behavior is predicted for waves with length in the 
order of  meters. 

Systems of two immiscible liquids of  finite depth are shown to exhibit a different behavior. The 
increase in the critical current velocity with increasing wave amplitude becomes less pronounced 
and is eventually reversed as the wavelength increases. It should be noted though that such an 
inviscid analysis is expected to be of  practical significance only for liquids with very different 
viscosities. Otherwise, the velocity profiles would be such that a formulation based on the relative 
current speed would be unrealistic. 
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Figure 3. Slope of the dynamical limit line vs the dimension- 
less depth kd2 for a lower fluid of infinite extent. Results are 
presented for the ratio of densities r = 1.0 ( - - - )  and 0.9 
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Figure 4. Critical current velocity as a function of wave 
steepness. 
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The significance of the behavior of the dynamical limit is demonstrated in figure 4. The term 
[(Uc/UcO 2 -  1] is plotted vs the wave steepness k2a 2 for two generic cases, one with positive and 
one with negative slope. Progressive waves of permanent form exist in the region between the 
negative y-axis and the dynamical limit line. It is evident that, for a positive slope, the restriction 
imposed by the dynamical limit is a minimum wave steepness when U > Ud. With a negative slope 
there are no steady solutions for U > Ud and the restriction is a maximum steepness for U < UCj. 
Thus, for the first case, an increase in the current velocity U is expected to lead to progressively 
higher waves. If  interfacial waves generated by a mechanism different from the Kelvin-Helmholtz 
instability already exist, they are expected to steepen in accordance with the behavior of the steady 
solution. For a dynamical limit with negative slope, weakly nonlinear theory predicts that the 
inertia of the fluids and the gravity force cannot balance beyond a certain amplitude for high 
current velocities. This amplitude tends to zero as the Kelvin-Helmholtz velocity U~1 is approached 
from below. 

The stability analysis provides additional information on the evolution of the interface. In the 
present work the stability of weakly nonlinear waves to self-interaction with higher harmonics is 
considered. This choice restricts the evolution of the wave to development in time only and not 
in space and excludes the well known side-band instability (e.g. Drazin & Reid 1981). This 
instability is known to lead to a periodic modulation and partial recurrence of the original 
wavetrain (Lake et al. 1977). It is sought, therefore, in the present work to decouple this "weak" 
instability from the possibility of an explosive growth of the wave amplitude, due to a nonlinear 
Kelvin-Helmholtz mechanism. Evidence for such an evolution has been provided by Ahmed & 
Banerjee (1985), who noticed a sharp increase of the amplification factor in their stability analysis 
based on a Schr6dinger equation. 

The present analysis indicates that weakly nonlinear waves are stable, when the slope of the 
dynamical limit is positive. This result supports the arguments of the previous paragraph about 
an orderly growth of the wave steepness with increasing current speed. The results for negative 
slope are rather puzzling. Waves become unstable at current velocities below U¢1, leading to a rapid 
evolution (all harmonics become important) whose final stage cannot be predicted by the present 
analysis. For gas/liquid systems such a possibility is supported only for a range of long waves 
bounded by a thin gas film. Whether this corresponds to the subcritical transition of slug flow, 
which has been repeatedly documented and proven hard to explain (Wallis & Dobson 1973; 
Lin & Hanratty 1986), is presently unclear. In contrast to the above conclusions, the analysis of 
Ahmed & Banerjee (1985) indicates subcritical instability for the entire range of wavelengths in their 
work. Therefore, it seems plausible that an instability mechanism, different from the nonlinear 
self-interaction presently considered, is also active. The exact nature of such an instability remains 
to be elucidated. 

Finally, it is noted that a theory has recently been proposed (Bontozoglou & Hanratty 1990) 
which seems to reconcile to a certain extent the experimental results of transition to slug flow for 
both water and highly viscous liquids. A period-doubling bifurcation of capillary-gravity ripples is 
studied therein and it is speculated that this evolution--triggered by a subcritical Kelvin-Helmholtz 
instability of the short wave--is the first step in a nonlinear process leading from ripples to slugs. 
The underlying mechanism is essentially a second-order resonance between the short wave and its 
first subharmonic. With this in mind, the following more general possibility is proposed; a long 
wave that is itself Kelvin-Helmholtz stable could grow through resonance with a shorter wave that 
becomes unstable. This possible mechanism will be considered in future work. 

Acknowledgements--This work has been supported, in part, by the General Secretariat for Research 
and Technology of Greece and by the Commission of European Communities (under the programme 
VALOREN). The author is indebted to Professor T. J. Hanratty for his guidance during the author's Ph.D. 
years, when part of this work was formulated. 

REFERENCES 

AHMED, R. • BANERJEE, S. 1985 Finite amplitude waves in stratified two-phase flow: transition to 
slug flow. AIChE Jl 31, 1480-1487. 



518 V. BONTOZOGLOU 

ANDRITSOS, N. & HANRATTY, T. J. 1987 Influence of interracial waves on hold-up and frictional 
pressure-drop in stratified gas-liquid flows. AIChE Jl 33, 444-454. 

BONTOZOGLOU, V. & HANRATTY, T. J. 1988 Effects of finite depth and current velocity on large 
amplitude Kelvin-Helmholtz waves. J. Fluid Mech. 196, 187-204. 

BONTOZOGLOU, V. & HANRATTY, T. J. 1990 Capillary-gravity Kelvin-Helmholtz waves close to 
resonance. J. Fluid Mech. 217, 71-91. 

DRAZIN, P. G. & REID, W. H. 1981 Hydrodynamic Stability. Cambridge Univ. Press, Cambs. 
KORDYBAN, E. S. & RANOV, T. 1970 Mechanism of slug formation in horizontal two-phase flow. 

J. Basic Engng 92, 857-864. 
LAKE, B. M., YUEN, H. C., RUNGALDI, H. & FERGUSON, W. E. 1977 Nonlinear deep-water waves: 

theory and experiment, 2: evolution of a continuous wave train. J. Fluid Mech. 83, 49-74. 
LIN, P. Y. & HANRATTY, T. J. 1986 Prediction of the initiation of slugs with linear stability theory. 

Int. J. Multiphase Flow 12, 79-98. 
MILES, J. W. 1986 Weakly nonlinear Kelvin-Helmholtz waves. J. Fluid Mech. 172, 513-529. 
PULLIN, D. I. & GRIMSHAW, R. H. J. 1983a Nonlinear interfacial progressive waves near a boundary 

in a Boussinesq fluid. Phys. Fluids 26(4), 897-905. 
PULLIN, n .  I. & GRIMSHAW, R. H. J. 1983b Interfacial progressive gravity waves in a two-layer 

shear flow. Phys. Fluids 26(7), 1731-1739. 
SAFFMAN, P. G. & YUEN, H. C. 1982 Finite-amplitude interracial waves in the presence of a current. 

J. Fluid Mech. 123, 459-476. 
WALLIS, G. B. & DOBSON, J. E. 1973 The onset of slugging in horizontal stratified air-water flow. 

Int. J. Multiphase Flow 1, 173-193. 
WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience, New York. 


